Variational Multiscale Finite Element Method for Flows in Highly Porous Media

نویسندگان

  • Oleg P. Iliev
  • Raytcho D. Lazarov
  • Joerg Willems
چکیده

We present a two-scale finite element method for solving Brinkman’s and Darcy’s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes’ equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy’s equations. In order to reduce the “resonance error” and to ensure convergence to the global fine solution the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the performance of the variational multiscale formulation for subsurface flow and transport in heterogeneous porous media

The following work compares two popular mixed finite elements used to model subsurface flow and transport in heterogeneous porous media; the lowest order Raviart-Thomas element and the variational multiscale stabilized element. Comparison is made based on performance for several problems of engineering relevance that involve highly heterogenous material properties (permeability ratios of up to ...

متن کامل

Multiscale finite element methods for porous media flows and their applications

In this paper, we discuss some applications of multiscale finite element methods to two-phase immiscible flow simulations in heterogeneous porous media. We discuss some extensions of multiscale finite element methods which take into account some limited global information. These methods are well suited for channelized porous media, where the long-range effects are important. This is typical for...

متن کامل

Multiscale Finite Element Methods for Nonlinear Problems and Their Applications

In this paper we propose a generalization of multiscale finite element methods (MsFEM) to nonlinear problems. We study the convergence of the proposed method for nonlinear elliptic equations and propose an oversampling technique. Numerical examples demonstrate that the oversampling technique greatly reduces the error. The application of MsFEM to porous media flows is considered. Finally, we des...

متن کامل

A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms

We present a variational multiscale mixed finite element method for the solution of Darcy flow in porous media, in which both the permeability field and the source term display a multiscale character. The formulation is based on a multiscale split of the solution into coarse and subgrid scales. This decomposition is invoked in a variational setting that leads to a rigorous definition of a (glob...

متن کامل

A Parallel Variational Multiscale Method for Incompressible Flows Based on the Partition of Unity

A parallel variational multiscale method based on the partition of unity is proposed for incompressible flows in this paper. Based on two-grid method, this algorithm localizes the global residual problem of variational multiscale method into a series of local linearized residual problems. To decrease the undesirable effect of the artificial homogeneous Dirichlet boundary condition of local sub-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2011